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A general and convenient approach for the palladium-cata-
lyzed cross-coupling of triallyl(aryl)silanes, stable and easily ac-
cessible arylsilanes, with aryl chlorides has been demonstrated.
The scope of the reaction is broad and a wide variety of function-
al groups are tolerant to the present catalyst system.

The biaryl subunit has seen a prominent presence not only in
many biologically active molecules but also in many novel ma-
terials such as organic semiconductors and liquid crystals.1 Tran-
sition metal-catalyzed cross-coupling reaction between arylme-
tal nucleophiles with aryl electrophiles has emerged as a
unique and effective strategy to construct biaryls.2 Although var-
ious organometallic reagents have been employed for the cross-
coupling reactions,2,3 the toxic by-products,4 oxygen sensitivity,
and less availability associated with many metallic reagents
makes a great appeal to search for an alternative. To substantiate
these cumulative problems, organosilanes have recently been in-
troduced as a viable candidate due to their availability, stability,
and non-toxic by-products.5

At first, aryl(fluoro)silanes and aryl(chloro)silanes were suc-
cessfully coupled with aryl halides and triflates as disclosed from
this laboratory to provide unsymmetrical biaryls in good yields.6

Recently, this method has been utilized in solid phase synthesis;7

various arylsilanols, trialkoxy(aryl)silanes, poly(phenylsilox-
ane)s, aryl(chloro or fluoro)silacyclobutanes, and arylsilatranes
were employed for the cross-coupling reaction with aryl halides
and triflates.8–10

These arylsilanes, however, require at least one heteroatom
on silicon to enhance the electrophilicity and thus are generally
sensitive to water, base and/or acid. Cross-coupling of arylsi-
lanes have been focused mainly on the reaction with aryl bro-
mides, iodides and triflates; electron-deficient aryl chlorides cou-
ple with aryl(chloro)silanes and phenyltrimethoxysilane partly
successfully, but electron-neutral and -rich aryl chlorides do on-
ly moderately.6,8 To address the above drawbacks, we disclosed
very recently an approach to the cross-coupling of stable all-car-
bon-substituted triallyl(aryl)silanes, as a notable alternative to
the arylsilane nucleophile, easily accessible, quite stable toward
moisture, bases, and acids, with various aryl bromides in the
presence of PdCl2, PCy3, and TBAF in DMSO-H2O to afford
the corresponding biaryls in good to excellent yields.11 Herein,
we describe a general, quite effective, and an alternative method
for the cross-coupling of an array of triallyl(aryl)silanes with
electronically and sterically different aryl chlorides, readily
available with low cost, in fairly good yields.

Among many trials under various catalyst/ligand/solvent
systems, we were pleased to observe that the catalyst [(�3-
C3H5)PdCl]2 in the presence of a biaryl ligand introduced by
Buchwald12 played a key role to the cross-coupling reaction.
Thus, our optimized conditions {[(�3-C3H5)PdCl]2 (2.5mol
%), 2-dicyclohexylphosphino-20,40,60-triiospropylbiphenyl (L,

10mol %), TBAF (4.0 equiv. with respect to arylsilane) in
THF-H2O (20:1), 80 �C} were applied to a wide array of elec-
tron-poor aryl chlorides to give the corresponding coupled prod-
ucts in good yields (Table 1, Entries 1–3).13 The cross-coupling
proceeded also with electron-rich aryl chlorides (Entries 6 and
7). One or two o-substituents did not affect the efficiency (En-
tries 4, 5, and 8–11). Pyridine- and thiophene-derived heteroaryl
chlorides also cross-coupled smoothly (Entries 12 and 13).

Regardless of the substituent in the arylsilane component,
the cross-coupling proceeds effectively. Thus, chlorine in elec-
tron-rich, -poor chlorobenzenes was successfully substituted
by 4-methoxyphenyl in good yields by the catalyst system (En-
tries 14 and 15). 3-Chloropyridine is not exception (Entry 16).
Triallyl(4-methylphenyl)silane also successfully coupled with
various aryl chlorides (Entries 17 and 18). Further, sterically hin-

Table 1. Cross-coupling of triallyl(aryl)silanes with aryl chlo-
rides

2) Ar2-Cl (1.00 mmol)
[(η3-C3H5)PdCl]2 (2.5 mol%)
L (10 mol%), 80 °C

(1.25 mmol)

1) TBAF (5.0 mmol),
THF–H2O (20 : 1, 5 mL), rt, 1 h.

Ar1-Si(allyl)3 Ar1 Ar2

i-Pr

i-Pr
PCy2

L =

i-Pr

Entry Ar1– Ar2–
Time Yield of
/h Ar1–Ar2/%a

1 C6H5– 4-CF3C6H4– 3 95
2 C6H5– 4-FC6H4– 3 91
3 C6H5– 4-NCC6H4– 3 77
4 C6H5– 2-CF3C6H4– 3 86
5 C6H5– 2-FC6H4– 3 85
6 C6H5– 4-MeOC6H4– 12 97
7 C6H5– 3-MeOC6H4– 14 99
8 C6H5– 2-MeOC6H4– 14 94
9 C6H5– 2-MeC6H4– 16 88

10 C6H5– 1-Naphthyl– 14 94
11 C6H5– 2,6-Me2C6H3– 12 87
12 C6H5– 3-Pyridyl– 14 98
13 C6H5– 2-Thienyl– 12 93
14 4-MeOC6H4– 4-MeC6H4– 4 95b

15 4-MeOC6H4– 4-CF3C6H4– 3 89b

16 4-MeOC6H4– 3-Pyridyl– 6 92b

17 4-MeC6H4– 4-MeOC6H4– 4 93b

18 4-MeC6H4– 2-MeOC6H4– 4 85b

19 2-MeC6H4– 4-CF3C6H4– 4 78c

20 2-MeC6H4– 4-MeOC6H4– 4 92c

21 4-FC6H4– 4-MeC6H4– 11 99d

aIsolated yield based on aryl chloride. bArylsilane (1.20mmol)
was used. cArylsilane (1.30mmol) was used. dArylsilane (1.8
equiv. with respect to aryl chloride) was used.
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dered 2-methylphenyl and less nucleophilic 4-fluorophenyl
groups were allowed to couple with a range of aryls in ArCl to
afford the corresponding biaryls in acceptable yields (Entries
19–21).

The efficiency of our strategy is demonstrated by sequential
cross-coupling of polyhalobenzenes. For example, applying dif-
ferent reaction parameters to bromochlorobenzenes, unsymmet-
rical terphenyls are readily prepared. Thus, cross-coupling reac-
tion of triallyl(phenyl)silane (1) with 4-bromochlorobenzene by
the catalyst system including PdCl2, PCy3, and TBAF in DMSO-
H2O afforded the corresponding biaryls without affecting the
chloro group in 98% yield.11 Subsequent cross-coupling with tri-
allyl(4-methoxyphenyl)silane gave the unsymmetrical p-ter-
phenyl in 87% yield as shown in Scheme 1. Similarly, the syn-
thesis of 4-methyl-m-terphenyl was also achieved by
performing the identical reaction sequences with 3-bromochlo-
robenzene in good yields as depicted in Scheme 1.

Although the reactive intermediates that were generated on
treatment of TBAF with triallyl(phenyl)silane were not identi-
fied yet, we presume that the three-allyl groups on Si would be
cleaved upon treatment with TBAF and an appropriate amount
of water in the reaction media14 to form possibly activated sili-
cate species such as fluorosilanes, silanepolyols, siloxanes,
and/or their mixed forms.15,16

In summary, we have demonstrated a general and novel ap-
proach for the cross-coupling of aryl chlorides with triallyl(aryl)-
silanes. It is noteworthy to emphasize that triallyl(aryl)silanes
serve as a highly practical and convenient agent and are fairly
stable toward moisture, acid and/or bases. The catalyst system
described herein effectively runs the cross-coupling of a wide
range of substrates to provide the desired biaryls in excellent
yields. Because of easy accessibility of aryl chlorides and stabil-
ity of organosilane reagents as well as the non-toxic by-products
associated with the triallyl(aryl)silanes, the present methodology
would likely to find a widespread use in synthetic organic chem-
istry. Current efforts are directed towards the practical cross-
coupling of aryl electrophiles by use of activators other than
TBAF.
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Scheme 1. Reagents and Conditions: a. TBAF�3H2O (4.4
equiv.), DMSO-H2O (10:1), rt, 1 h. b. PdCl2 (5mol %), PCy3
(10mol %), 80 �C, 12 h. c. TBAF�3H2O (4.4 equiv.), THF-
H2O (20:1), rt, 1 h. d. [(�3-C3H5)PdCl]2 (2.5mol %), L (10
mol %), 80 �C, 8 h.
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